5/H-16 (vi) (Syllabus-2015)

2018
 (October)

ECONOMICS

(Honours)
(Mathematics for Economists)
Marks : 75
Time : 3 hours
The figures in the margin indicate full marks for the questions

Answer five questions, taking at least one from each Unit

Unit-I

1. (a) Find the equation of the straight line passing through the points $(2,2)$ and $(4,8)$.

2
(b) Determine the equation of the line
having intercept a on x-axis and
intercept b on y-axis.
(c) What are the differences between an ordered pair $(1,2)$ and a set $\{1,2\}$?
(d) Prove the distributive laws using Venn diagrams.
2. (a) Differentiate between explicit and implicit functions.
(b) Three daily newspapers are published in a city with a literate population of 4000 . Following are the reading habits :
48% read $A, 54 \%$ read $B, 64 \%$
read C, 28% read A and B,
32% read B and $C, 30 \%$ read C
and A and 6% do not read any of the
newspapers

Find the number of persons who read (i) all three newspapers and (ii) B and C not A. newspapers and (ii) B and $4+4=8$
(c) Briefly explain the methods of 4
denoting a set.

UNIT-II

3. (a) Distinguish between a symmetric matrix and a skew-symmetric matrix.
(b) Prove that $(A B C)^{T}=B^{T} C^{T} A^{T}$. Given

$$
A=\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right], B=\left[\begin{array}{ll}
3 & 0 \\
1 & 5
\end{array}\right], C=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right] \quad 7
$$

(c) Prove that matrix multiplication is not commutative.
4. (a) Solve the following linear programming problem graphically :

Maximize $Z=45 x+80 y$ subject to

$$
\begin{aligned}
5 x+20 y & \leq 400 \\
10 x+15 y & \leq 450 \\
x \geq 0, y & \geq 0
\end{aligned}
$$

(b) A factory has 90,80 and 50 running feet respectively of teak, pinewood and rosewood. Product A requires 2, 1 and 1 running feet and product B requires 1,2 and 1 running feet of teak, pinewood and rosewood respectively.

If A could sell for $₹ 48$ and B could sell for F^{40} per unit, how much of each should be produced and sold to maximize gross income out of his stock of wood? Give a mathematical formulation of this linear programming problem and solve by graphical $5+5=10$
UNIT-III
5. (a) Given the demand and average cost functions of a monopolistic firm as $P=32-3 Q, A C=Q+8+\frac{5}{Q}$. What level of output will maximize total profit and what are the corresponding values of MC and MR? corresponding
(b) Find the elasticity of demand (e) and $q=30-5 p-p^{2}$.
6. (a) Explain an inflection point with suitable illustrations from economics.
For the For the given economics.
$y=x^{3}-3 x^{2}+7$, find function inflection. $3+3=6$
(b) Find the total differential of the following : $3 \times 3=9$
(i) $Z=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
(ii) $Z=\left(x^{2}+y\right)\left(2 x-y^{2}\right)$
(iii) $Z=\log \left(x^{2}+y^{2}\right)$
UNIT-IV
7. (a) Use the substitution rule to find

$$
\begin{equation*}
\int \frac{4 x^{3}+2}{\left(4 x^{4}+8 x\right)^{5}} d x \tag{3}
\end{equation*}
$$

(b) Find the total revenue function and the demand function from the given marginal revenue function

$$
M R=3-2 x-x^{2} \quad 2+3=5
$$

(c) What is producer's surplus? If a producer's supply function is given by $Q=\sqrt{-4+4 p}$ and the market price is
10 , find the producer's surplus. $2+5=7$

(6)

8. (a) The demand and supply functions are $P_{d}=(6-q)^{2}$ and $P_{s}=14+q$ respec- . tively. Find the consumer's surplus under perfect competition.
(b) Find the integrals of the following :
(i) $\int \frac{I_{n}(x)}{x} d x$
(ii) $\int \frac{8 x}{\left(2 x^{2}+1\right)} d x$
